Browse Source

minimal workig vulkan using vert/frag shaders

puh... its quite some boilerplate
main
heck 2 years ago
parent
commit
390f2b9c57
  1. 4
      Makefile.conf
  2. 9
      shaders/base.frag
  3. 20
      shaders/base.vert
  4. 938
      src/main_base.cc

4
Makefile.conf

@ -31,7 +31,8 @@ CXXFLAGS+=\
-fPIC \
-Wall \
-Wextra \
-pedantic
-pedantic \
-Wunused-function
ifneq (,$(findstring g++,$(CXX)))
COMPILE_FLAGS+=-fdiagnostics-color=always
@ -45,6 +46,7 @@ LIBS+=-lm
LIBS+=-lglfw
LIBS+=-lVulkan
LIBS+=-lglm_shared
LIBS+=-lheck_log
LDFLAGS+=$(LIBS)

9
shaders/base.frag

@ -0,0 +1,9 @@
#version 450
layout(location = 0) in vec3 fragColor;
layout(location = 0) out vec4 outColor;
void main() {
outColor = vec4(fragColor, 1.0);
}

20
shaders/base.vert

@ -0,0 +1,20 @@
#version 450
layout(location = 0) out vec3 fragColor;
vec2 positions[3] = vec2[](
vec2(0.0, -0.5),
vec2(0.5, 0.5),
vec2(-0.5, 0.5)
);
vec3 colors[3] = vec3[](
vec3(1.0, 0.0, 0.0),
vec3(0.0, 1.0, 0.0),
vec3(0.0, 0.0, 1.0)
);
void main() {
gl_Position = vec4(positions[gl_VertexIndex], 0.0, 1.0);
fragColor = colors[gl_VertexIndex];
}

938
src/main_base.cc

@ -1,101 +1,901 @@
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>
#include <heck/log.h>
#include <iostream>
#include <stdexcept>
#include <cstdlib>
#include <vector>
#include <optional>
#include <set>
#include <fstream>
const uint32_t WIDTH = 800;
const uint32_t HEIGHT = 600;
class HelloTriangleApplication {
public:
void run()
{
initWindow();
initVulkan();
mainLoop();
cleanup();
}
namespace Heck {
struct VulkanBase {
VulkanBase(GLFWwindow& window) : window(window)
{
deviceExtensions.emplace_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
}
VulkanBase() = delete;
VulkanBase(VulkanBase& other) = delete;
VulkanBase(VulkanBase&& other) = delete;
VulkanBase& operator=(VulkanBase& rhs) = delete;
VulkanBase& operator=(VulkanBase&& rhs) = delete;
~VulkanBase() = default;
private:
GLFWwindow* window;
VkInstance instance;
struct QueueFamilyIndices {
std::optional<uint32_t> graphicsFamily;
std::optional<uint32_t> presentFamily;
void initWindow()
{
glfwInit();
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
}
bool isComplete()
{
HECK_LOG_INFO("");
return graphicsFamily.has_value() && presentFamily.has_value();
}
};
void initVulkan()
{
createInstance();
}
struct SwapChainSupportDetails {
VkSurfaceCapabilitiesKHR capabilities;
std::vector<VkSurfaceFormatKHR> formats;
std::vector<VkPresentModeKHR> presentModes;
};
std::vector<const char*> deviceExtensions{};
GLFWwindow& window;
VkInstance instance{};
VkSurfaceKHR surface{};
VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
VkDevice device{};
VkQueue graphicsQueue{};
VkQueue presentQueue{};
VkSwapchainKHR swapChain{};
std::vector<VkImage> swapChainImages{};
VkFormat swapChainImageFormat{};
VkExtent2D swapChainExtent{};
std::vector<VkImageView> swapChainImageViews{};
VkPipelineLayout pipelineLayout{};
VkRenderPass renderPass{};
VkPipeline graphicsPipeline{};
std::vector<VkFramebuffer> swapChainFramebuffers{};
void mainLoop()
{
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
VkCommandPool commandPool{};
VkCommandBuffer commandBuffer{};
VkSemaphore imageAvailableSemaphore{};
VkSemaphore renderFinishedSemaphore{};
VkFence inFlightFence{};
void init()
{
HECK_LOG_INFO("");
createInstance();
createSurface();
pickPhysicalDevice();
createLogicalDevice();
createSwapChain();
createImageViews();
createRenderPass();
createGraphicsPipeline();
createFramebuffers();
createCommandPool();
createCommandBuffer();
createSyncObjects();
}
}
void cleanup()
{
vkDestroyInstance(instance, nullptr);
glfwDestroyWindow(window);
glfwTerminate();
}
void createInstance()
{
HECK_LOG_INFO("");
VkInstanceCreateInfo createInfo{};
VkApplicationInfo appInfo{};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Hello Triangle";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "No Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;
createInfo.pApplicationInfo = &appInfo;
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
uint32_t glfwExtensionCount = 0;
const char** glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
createInfo.enabledExtensionCount = glfwExtensionCount;
createInfo.ppEnabledExtensionNames = glfwExtensions;
createInfo.enabledLayerCount = 0;
std::vector<const char*> requiredExtensions{};
for (uint32_t i = 0; i < glfwExtensionCount; i++) {
requiredExtensions.emplace_back(glfwExtensions[i]);
}
requiredExtensions.emplace_back(VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME);
createInfo.flags |= VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR;
createInfo.enabledExtensionCount = (uint32_t)requiredExtensions.size();
createInfo.ppEnabledExtensionNames = requiredExtensions.data();
if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
throw std::runtime_error("failed to create instance!");
}
}
void createSurface()
{
HECK_LOG_INFO("");
if (glfwCreateWindowSurface(instance, &window, nullptr, &surface) != VK_SUCCESS) {
throw std::runtime_error("failed to create window surface!");
}
}
QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device)
{
HECK_LOG_INFO("");
QueueFamilyIndices indices{};
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());
int i = 0;
for (const auto& queueFamily : queueFamilies) {
HECK_LOG_INFO("Checking queue family nr:" << 0);
if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
indices.graphicsFamily = i;
}
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);
if (presentSupport) {
indices.presentFamily = i;
}
if (indices.isComplete()) {
break;
}
i++;
}
return indices;
}
void pickPhysicalDevice()
{
HECK_LOG_INFO("");
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
HECK_LOG_INFO("devices found:" << deviceCount);
if (deviceCount == 0) {
throw std::runtime_error("failed to find GPUs with Vulkan support!");
}
std::vector<VkPhysicalDevice> devices{ deviceCount };
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
for (const VkPhysicalDevice& device : devices) {
if (isDeviceSuitable(device)) {
physicalDevice = device;
break;
}
}
if (physicalDevice == VK_NULL_HANDLE) {
throw std::runtime_error("failed to find a suitable GPU!");
}
}
void createLogicalDevice()
{
HECK_LOG_INFO("");
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
std::set<uint32_t> uniqueQueueFamilies = { indices.graphicsFamily.value(),
indices.presentFamily.value() };
float queuePriority = 1.0f;
for (uint32_t queueFamily : uniqueQueueFamilies) {
VkDeviceQueueCreateInfo queueCreateInfo{};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = queueFamily;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &queuePriority;
queueCreateInfos.push_back(queueCreateInfo);
}
VkPhysicalDeviceFeatures deviceFeatures{};
VkDeviceCreateInfo createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
createInfo.pQueueCreateInfos = queueCreateInfos.data();
createInfo.pEnabledFeatures = &deviceFeatures;
void createInstance()
{
VkApplicationInfo appInfo{};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Hello Triangle";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "No Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;
createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
createInfo.ppEnabledExtensionNames = deviceExtensions.data();
VkInstanceCreateInfo createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = &appInfo;
createInfo.enabledLayerCount = 0;
uint32_t glfwExtensionCount = 0;
const char** glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
createInfo.enabledExtensionCount = glfwExtensionCount;
createInfo.ppEnabledExtensionNames = glfwExtensions;
createInfo.enabledLayerCount = 0;
if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
throw std::runtime_error("failed to create logical device!");
}
std::vector<const char*> requiredExtensions{};
for (uint32_t i = 0; i < glfwExtensionCount; i++) {
requiredExtensions.emplace_back(glfwExtensions[i]);
vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);
}
requiredExtensions.emplace_back(VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME);
createInfo.flags |= VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR;
createInfo.enabledExtensionCount = (uint32_t)requiredExtensions.size();
createInfo.ppEnabledExtensionNames = requiredExtensions.data();
bool isDeviceSuitable(VkPhysicalDevice device)
{
HECK_LOG_INFO(device);
bool ret = false;
QueueFamilyIndices indices = findQueueFamilies(device);
if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
throw std::runtime_error("failed to create instance!");
bool extensionsSupported = checkDeviceExtensionSupport(device);
bool swapChainAdequate = false;
if (extensionsSupported) {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
swapChainAdequate = !swapChainSupport.formats.empty() &&
!swapChainSupport.presentModes.empty();
}
if (indices.isComplete() && extensionsSupported && swapChainAdequate) {
HECK_LOG_INFO("device is suitable");
ret = true;
} else {
HECK_LOG_INFO("device not suitable");
ret = false;
}
return ret;
}
void createSwapChain()
{
HECK_LOG_INFO("");
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);
VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);
uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
if (swapChainSupport.capabilities.maxImageCount > 0 &&
imageCount > swapChainSupport.capabilities.maxImageCount) {
imageCount = swapChainSupport.capabilities.maxImageCount;
}
VkSwapchainCreateInfoKHR createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createInfo.surface = surface;
createInfo.minImageCount = imageCount;
createInfo.imageFormat = surfaceFormat.format;
createInfo.imageColorSpace = surfaceFormat.colorSpace;
createInfo.imageExtent = extent;
createInfo.imageArrayLayers = 1;
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
uint32_t queueFamilyIndices[] = { indices.graphicsFamily.value(),
indices.presentFamily.value() };
if (indices.graphicsFamily != indices.presentFamily) {
createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
createInfo.queueFamilyIndexCount = 2;
createInfo.pQueueFamilyIndices = queueFamilyIndices;
} else {
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
}
createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createInfo.presentMode = presentMode;
createInfo.clipped = VK_TRUE;
createInfo.oldSwapchain = VK_NULL_HANDLE;
if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
throw std::runtime_error("failed to create swap chain!");
}
vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
swapChainImages.resize(imageCount);
vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());
swapChainImageFormat = surfaceFormat.format;
swapChainExtent = extent;
}
VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats)
{
HECK_LOG_INFO("");
for (const auto& availableFormat : availableFormats) {
if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB &&
availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
return availableFormat;
}
}
return availableFormats[0];
}
VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes)
{
HECK_LOG_INFO("");
for (const auto& availablePresentMode : availablePresentModes) {
if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return availablePresentMode;
}
}
return VK_PRESENT_MODE_FIFO_KHR;
}
VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities)
{
HECK_LOG_INFO("");
if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
return capabilities.currentExtent;
} else {
int width;
int height;
glfwGetFramebufferSize(&window, &width, &height);
VkExtent2D actualExtent = { static_cast<uint32_t>(width),
static_cast<uint32_t>(height) };
actualExtent.width = std::clamp(
actualExtent.width,
capabilities.minImageExtent.width,
capabilities.maxImageExtent.width);
actualExtent.height = std::clamp(
actualExtent.height,
capabilities.minImageExtent.height,
capabilities.maxImageExtent.height);
return actualExtent;
}
}
bool checkDeviceExtensionSupport(VkPhysicalDevice device)
{
HECK_LOG_INFO("");
uint32_t extensionCount;
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
vkEnumerateDeviceExtensionProperties(
device,
nullptr,
&extensionCount,
availableExtensions.data());
std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());
for (const auto& extension : availableExtensions) {
requiredExtensions.erase(extension.extensionName);
}
return requiredExtensions.empty();
}
SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device)
{
HECK_LOG_INFO("");
SwapChainSupportDetails details;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);
uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);
if (formatCount != 0) {
details.formats.resize(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(
device,
surface,
&formatCount,
details.formats.data());
}
uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);
if (presentModeCount != 0) {
details.presentModes.resize(presentModeCount);
vkGetPhysicalDeviceSurfacePresentModesKHR(
device,
surface,
&presentModeCount,
details.presentModes.data());
}
return details;
}
void createImageViews()
{
HECK_LOG_INFO("");
swapChainImageViews.resize(swapChainImages.size());
for (size_t i = 0; i < swapChainImages.size(); i++) {
HECK_LOG_INFO("Creating swap chain image nr: " << i);
VkImageViewCreateInfo createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
createInfo.image = swapChainImages[i];
createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
createInfo.format = swapChainImageFormat;
createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
createInfo.subresourceRange.baseMipLevel = 0;
createInfo.subresourceRange.levelCount = 1;
createInfo.subresourceRange.baseArrayLayer = 0;
createInfo.subresourceRange.layerCount = 1;
if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) !=
VK_SUCCESS) {
throw std::runtime_error("failed to create image views!");
}
}
}
void createGraphicsPipeline()
{
HECK_LOG_INFO("");
auto vertShaderCode = readFile("../shaders/base.vert.spv");
auto fragShaderCode = readFile("../shaders/base.frag.spv");
VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);
VkPipelineShaderStageCreateInfo vertShaderStageInfo{};
vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
vertShaderStageInfo.module = vertShaderModule;
vertShaderStageInfo.pName = "main";
VkPipelineShaderStageCreateInfo fragShaderStageInfo{};
fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
fragShaderStageInfo.module = fragShaderModule;
fragShaderStageInfo.pName = "main";
VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo,
fragShaderStageInfo };
VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.vertexBindingDescriptionCount = 0;
vertexInputInfo.vertexAttributeDescriptionCount = 0;
VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
inputAssembly.primitiveRestartEnable = VK_FALSE;
VkPipelineViewportStateCreateInfo viewportState{};
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.viewportCount = 1;
viewportState.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo rasterizer{};
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizer.depthClampEnable = VK_FALSE;
rasterizer.rasterizerDiscardEnable = VK_FALSE;
rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
rasterizer.lineWidth = 1.0f;
rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;
rasterizer.depthBiasEnable = VK_FALSE;
VkPipelineMultisampleStateCreateInfo multisampling{};
multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampling.sampleShadingEnable = VK_FALSE;
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineColorBlendAttachmentState colorBlendAttachment{};
colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT;
colorBlendAttachment.blendEnable = VK_FALSE;
VkPipelineColorBlendStateCreateInfo colorBlending{};
colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlending.logicOpEnable = VK_FALSE;
colorBlending.logicOp = VK_LOGIC_OP_COPY;
colorBlending.attachmentCount = 1;
colorBlending.pAttachments = &colorBlendAttachment;
colorBlending.blendConstants[0] = 0.0f;
colorBlending.blendConstants[1] = 0.0f;
colorBlending.blendConstants[2] = 0.0f;
colorBlending.blendConstants[3] = 0.0f;
std::vector<VkDynamicState> dynamicStates = { VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState{};
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size());
dynamicState.pDynamicStates = dynamicStates.data();
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 0;
pipelineLayoutInfo.pushConstantRangeCount = 0;
if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) !=
VK_SUCCESS) {
throw std::runtime_error("failed to create pipeline layout!");
}
VkGraphicsPipelineCreateInfo pipelineInfo{};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = shaderStages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelineInfo.pInputAssemblyState = &inputAssembly;
pipelineInfo.pViewportState = &viewportState;
pipelineInfo.pRasterizationState = &rasterizer;
pipelineInfo.pMultisampleState = &multisampling;
pipelineInfo.pColorBlendState = &colorBlending;
pipelineInfo.pDynamicState = &dynamicState;
pipelineInfo.layout = pipelineLayout;
pipelineInfo.renderPass = renderPass;
pipelineInfo.subpass = 0;
pipelineInfo.basePipelineHandle = VK_NULL_HANDLE;
if (vkCreateGraphicsPipelines(
device,
VK_NULL_HANDLE,
1,
&pipelineInfo,
nullptr,
&graphicsPipeline) != VK_SUCCESS) {
throw std::runtime_error("failed to create graphics pipeline!");
}
vkDestroyShaderModule(device, fragShaderModule, nullptr);
vkDestroyShaderModule(device, vertShaderModule, nullptr);
}
VkShaderModule createShaderModule(const std::vector<char>& code)
{
HECK_LOG_INFO("");
VkShaderModuleCreateInfo createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
createInfo.codeSize = code.size();
createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());
VkShaderModule shaderModule;
if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
throw std::runtime_error("failed to create shader module!");
}
return shaderModule;
}
void createRenderPass()
{
HECK_LOG_INFO("");
VkAttachmentDescription colorAttachment{};
colorAttachment.format = swapChainImageFormat;
colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference colorAttachmentRef{};
colorAttachmentRef.attachment = 0;
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass{};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorAttachmentRef;
VkSubpassDependency dependency{};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.srcAccessMask = 0;
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkRenderPassCreateInfo renderPassInfo{};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = 1;
renderPassInfo.pAttachments = &colorAttachment;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 1;
renderPassInfo.pDependencies = &dependency;
if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
throw std::runtime_error("failed to create render pass!");
}
}
void createFramebuffers()
{
HECK_LOG_INFO("");
swapChainFramebuffers.resize(swapChainImageViews.size());
for (size_t i = 0; i < swapChainImageViews.size(); i++) {
VkImageView attachments[] = { swapChainImageViews[i] };
VkFramebufferCreateInfo framebufferInfo{};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.renderPass = renderPass;
framebufferInfo.attachmentCount = 1;
framebufferInfo.pAttachments = attachments;
framebufferInfo.width = swapChainExtent.width;
framebufferInfo.height = swapChainExtent.height;
framebufferInfo.layers = 1;
if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) !=
VK_SUCCESS) {
throw std::runtime_error("failed to create framebuffer!");
}
}
}
void createCommandPool()
{
HECK_LOG_INFO("");
QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);
VkCommandPoolCreateInfo poolInfo{};
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
throw std::runtime_error("failed to create command pool!");
}
}
void createCommandBuffer()
{
HECK_LOG_INFO("");
VkCommandBufferAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = 1;
if (vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate command buffers!");
}
}
void recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex)
{
VkCommandBufferBeginInfo beginInfo{};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
throw std::runtime_error("failed to begin recording command buffer!");
}
VkRenderPassBeginInfo renderPassInfo{};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassInfo.renderPass = renderPass;
renderPassInfo.framebuffer = swapChainFramebuffers[imageIndex];
renderPassInfo.renderArea.offset = { 0, 0 };
renderPassInfo.renderArea.extent = swapChainExtent;
VkClearValue clearColor = { { { 0.0f, 0.0f, 0.0f, 1.0f } } };
renderPassInfo.clearValueCount = 1;
renderPassInfo.pClearValues = &clearColor;
vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);
VkViewport viewport{};
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = static_cast<float>(swapChainExtent.width);
viewport.height = static_cast<float>(swapChainExtent.height);
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
VkRect2D scissor{};
scissor.offset = { 0, 0 };
scissor.extent = swapChainExtent;
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
vkCmdDraw(commandBuffer, 3, 1, 0, 0);
vkCmdEndRenderPass(commandBuffer);
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
throw std::runtime_error("failed to record command buffer!");
}
}
void createSyncObjects()
{
VkSemaphoreCreateInfo semaphoreInfo{};
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
VkFenceCreateInfo fenceInfo{};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphore) !=
VK_SUCCESS ||
vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphore) !=
VK_SUCCESS ||
vkCreateFence(device, &fenceInfo, nullptr, &inFlightFence) != VK_SUCCESS) {
throw std::runtime_error("failed to create synchronization objects for a frame!");
}
}
void drawFrame()
{
vkWaitForFences(device, 1, &inFlightFence, VK_TRUE, UINT64_MAX);
vkResetFences(device, 1, &inFlightFence);
uint32_t imageIndex;
vkAcquireNextImageKHR(
device,
swapChain,
UINT64_MAX,
imageAvailableSemaphore,
VK_NULL_HANDLE,
&imageIndex);
vkResetCommandBuffer(commandBuffer, /*VkCommandBufferResetFlagBits*/ 0);
recordCommandBuffer(commandBuffer, imageIndex);
VkSubmitInfo submitInfo{};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
VkSemaphore waitSemaphores[] = { imageAvailableSemaphore };
VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = waitSemaphores;
submitInfo.pWaitDstStageMask = waitStages;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
VkSemaphore signalSemaphores[] = { renderFinishedSemaphore };
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = signalSemaphores;
if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFence) != VK_SUCCESS) {
throw std::runtime_error("failed to submit draw command buffer!");
}
VkPresentInfoKHR presentInfo{};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = signalSemaphores;
VkSwapchainKHR swapChains[] = { swapChain };
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = swapChains;
presentInfo.pImageIndices = &imageIndex;
vkQueuePresentKHR(presentQueue, &presentInfo);
}
void cleanup()
{
HECK_LOG_INFO("");
vkDestroySemaphore(device, renderFinishedSemaphore, nullptr);
vkDestroySemaphore(device, imageAvailableSemaphore, nullptr);
vkDestroyFence(device, inFlightFence, nullptr);
vkDestroyCommandPool(device, commandPool, nullptr);
for (auto framebuffer : swapChainFramebuffers) {
vkDestroyFramebuffer(device, framebuffer, nullptr);
}
vkDestroyPipeline(device, graphicsPipeline, nullptr);
vkDestroyRenderPass(device, renderPass, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
for (auto imageView : swapChainImageViews) {
vkDestroyImageView(device, imageView, nullptr);
}
vkDestroySwapchainKHR(device, swapChain, nullptr);
vkDestroyDevice(device, nullptr);
vkDestroySurfaceKHR(instance, surface, nullptr);
vkDestroyInstance(instance, nullptr);
}
static std::vector<char> readFile(const std::string& filename)
{
HECK_LOG_INFO("");
std::ifstream file(filename, std::ios::ate | std::ios::binary);
if (!file.is_open()) {
throw std::runtime_error("failed to open file!");
}
size_t fileSize = (size_t)file.tellg();
std::vector<char> buffer(fileSize);
file.seekg(0);
file.read(buffer.data(), fileSize);
file.close();
return buffer;
}
};
} // namespace Heck
GLFWwindow* window = nullptr;
Heck::VulkanBase *vb = nullptr;
void init()
{
HECK_LOG_INFO("");
glfwInit();
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
}
void mainLoop()
{
HECK_LOG_INFO("");
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
vb->drawFrame();
}
};
vkDeviceWaitIdle(vb->device);
}
void cleanup()
{
HECK_LOG_INFO("");
glfwDestroyWindow(window);
glfwTerminate();
}
int main()
{
HelloTriangleApplication app{};
Heck::Log::set_level(HECK_LOG_LEVEL_ALL);
init();
try {
app.run();
} catch (const std::exception& e) {
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
Heck::VulkanBase _vb{ *window };
vb = &_vb;
vb->init();
mainLoop();
vb->cleanup();
cleanup();
return EXIT_SUCCESS;
}

Loading…
Cancel
Save